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Memory-flow structures of a coupled three-element model, here a Lorenz chaos, have been investigat-
ed. Although in the models of coupled two-element systems, a bidirectional connectivity of information
transference is held and the memory flows of one channel exhibit a nearly out-of-phase relation, it is
found that in this Lorenz chaos one additional unidirectional connectivity can also occur and the nearly
out-of-phase relation in the coupled two-element models will be replaced by an antiphaselike relation in

Lorenz chaos.

PACS number(s): 05.45.+b

I. INTRODUCTION

It has been well known that the existence of chaos im-
plies that the loss of memory of initial conditions is in-
herent in dynamic systems [1]. Usually the concept of
loss of information can be quantitatively described by the
Lyapunov exponent. However, the use of the Lyapunov
exponent is limited by its characteristic nature of ex-
ponential divergence of close-by trajectories and it may
not be useful for a long time scale [2]. To characterize
such a memory loss of initial conditions, Gade and Am-
ritkar [2] have proposed a generalized time-dependent ex-
ponent approach which is the same as the information
theoretic approach of Fraser and Swinney [3], in terms of
probability. In the approach of Fraser and Swinney, the
information is calculated for the whole dynamic system
because a time-delay coordinate attractor-reconstruction
method has been adopted [3]. However, it is sometimes
more interesting to investigate the spatial interplay of
coupled-element systems (or spatially extended systems).
In such cases, it is necessary to find the connection be-
tween two channels (or two spatial points). To calculate
the mutual information flow between two channels, one
possible solution is to follow the approach of Matsumoto
and Tsuda [4] or Vastano and Swinney [5].

In terms of information theory, the mutual information
with a time lag for a channel (i.e., self-information)
characterizes the memory process embedded in the chan-
nel and the mutual information with a time lag between
different channels characterizes the information transport
structure between the channels. Two interesting ques-
tions are as follows: (i) How does a coupled-element sys-
tem lose the memory of initial conditions due to the cou-
pling between elements in chaos? (ii) What are the roles
played by individual elements in information transport?
The main concern is the interplay of the memory flows in
chaos for the coupled-element systems. To inspect this
topic, we have investigated different models of coupled
two-element systems with time delays [6]. The basic
features of memory flows have been explored. Based on
these features, we are therefore able to construct a
groundwork for a better understanding of the coupled
three-element model, here a Lorenz chaos. We note these
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basic features for comparison: (i) the mutual information
flows possess an almost in-phase relation between M;;
and M, ; (i#}), i.e., a bidirectional connectivity of infor-
mation transference always holds; (ii) the self-information
and mutual information flows are almost out of phase,
suggesting a process of information transport. This also
suggests that there is a fundamental period inherent in
the system such that the information among all elements
has to be circulated in a period of time.

II. INFORMATION THEORETIC
CHARACTERIZATION OF MEMORY FLOWS

For completeness, a brief survey of the information
theoretic calculation used in this paper will be given. Ac-
cording to the calculation method of Ikeda and
Matsumoto (7], we first calculate the self-information
flow for the ith channel, i.e.,

S,(r)=H,(0)+H,(1)—H, (1)=2H,0)—H, (r), (1)

where H;=—3 ! P,InP, is the Shannon entropy for
the ith channel, within which P, is the probability for the
channel being in an / state among all possible N states
generated by the ith channel, and the summation ¥ sums
over all the states from /=0 to N —1. The joint Shannon
entropy H;. (7)=—3%,,, P, ,,(7)InP, , (7), where P, (7)
means the probability in which an [ state appears at time
0 (initial conditions) and an m state appears at time 0+
for the ith channel. We call 7 the information flow time.
In the simulation, we store long time series of the ith
channel after a transient and determine the minimum,
maximum, and output ranges. The output range is divid-
ed into N intervals by a unit €, the limitation of resolution
ability. The recorded data, after subtracting the
minimum and dividing by €, can be assigned to a state
(from /=0 to N —1) according to the integer value. Be-
cause of finite €, the information is coarse grained. In the
simulation, we have adopted at least 40 000 events with
adjusted resolution to ensure realizable P; and P; ,,,. S;(7)
is the information generated by the ith channel at time
0+ 7 in common with that at time 0. If at time 7 the sys-
tem completely loses this common information, i.e., the
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memory of the initial conditions, then S;(7)=0. To in-
vestigate the information transport between two chan-
nels, we calculate the mutual information M, ;(7),

M,,J('r)=H1(0)+H](T)—H|,1(T) ) (2)

which is the information generated by the jth channel at
time 0+ 7 in common with that of the ith channel at time
0. Thus it can be used to characterize information trans-
port between the ith and jth channels with a time
difference 7. In terms of memory, M; ;(7) is the amount
of memory for the jth channel to remember the initial
conditions of ith channel.

It is known that the mathematical knowledge of corre-
lation functions is fairly well advanced. As emphasized
by Gade and Amritkar [2], it can be shown that for a sine
function, the autocorrelation function oscillates with
time, giving no indication of this perfectly predictable
system. On the other hand, the time-dependent general-
ized exponents (and so the self-information) remains con-
stant with time, providing a perfectly predictable indica-
tion. Thus to investigate the memory-flow structures in
dynamic systems, a correlation function is not a good
tool (see Fig. 1 of Fraser and Swinney in Ref. [3]).
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Indeed, it has been pointed out by Li that there is an ex-
act relation between the mutual information and the
correlation function if the data are of binary sequences
[8]. However, for sequences with more than two sym-
bols, which often occurs to dynamic systems, no general
relation has been derived.

III. MEMORY-FLOW STRUCTURES
OF A LORENZ CHAOS

Now we consider a coupled three-elemental model, a
Lorenz chaos. It is actually not difficult to imagine that
there is a simple path of information transference in the
coupled two-element systems: element 1(2)—element
2(1)—element 1(2). However, it is not simple at all to
figure out the path formation even just for coupled three
element system. More specific questions are as follows:
(i) Should an “out-of-phase’ of relation still exist? If not,
what kind of constitution will take place? (ii) Should an
“in-phase” relation still hold for M;; and M,;(i¥%))
flows? If not, what will occur? To answer these ques-
tions, we consider the well-known Lorenz equations as a
prototypical model, i.e.,
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FIG. 1. Pair relation in the information flows of Lorenz chaos: (a) a nearly in-phase feature occurs in the self-information flows;
(b) a nearly in-phase relation appears in the mutual information flows; (c) and (d) the out-of-phase features in the mutual information

flows.



50 MEMORY-FLOW STRUCTURES IN LORENZ CHAOS 4317
4 x()=—ox(t)+ay(t), (3)  tion cannot be seen just by a direct comparison between

dt two time series. Since we can take approximately a

d difference scheme in place of the differential term, e.g.,

Sy =—xz@O+m =y @), @ dx(t)/dt=[x()—x(t —AD]/At—>x(n)—x(n—1), a
simple coupling configuration for Lorenz equations is

iz(t)=x(t)y(t)—bz(t) , (5) available. It is straightforward to derive the coupling

dt configuration for coupled two-element models. Bidirec-

where x is proportional to the intensity of the convective
motion, y is proportional to the temperature difference
between the ascending and descending currents, and z is
proportional to the distortion of the vertical temperature
profile from linearity. Furthermore ¢ is a normalized
time, o is the Prandtl number, b is a constant related to
the aspect ratio, and r is related to the external control
parameter. The details can be found in Ref. [9]. In this
paper, we consider the case in which 0 =15 and b=4.
Under these conditions, the critical value of 7 is r,=33.
We set r=45.92 to drive the system into a chaotic state.
It is noted that the time series y (¢) is similar to x (z). We
will show later that the value of the simultaneous mutual
information between x and y is indeed considerably large.
However, the dynamic evolution of the mutual informa-

tional connectivity of information transference in coupled
two-element models thus seems expectable, based on the
appearance of self-coupling and bidirectional coupling
shown in configuration. This is not true for the Lorenz
chaos, however, as we will show later.

Now we examine the memory flows for such a Lorenz
chaos. It is shown in Fig. 1(a) that all three self-
information flows present similar evolutions, even though
the time series are different. We can classify the mutual
information in pairs according to the phase relation. As
shown in Fig. 1(b), M, , and M, , evolve with almost the
same phase, which is similar to what occurred in coupled
two-element systems [6]. Recall that the in-phase rela-
tion implies the occurrence of a bidirectional connectivi-
ty. Nevertheless, this almost in-phase relation is broken
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FIG. 2. Memory flows for the channels x, y, and z in a Lorenz chaos.
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in cases of M, , and M, , (also M, , and M, , ) since they
are actually almost out of phase, as shown in Figs. 1(c)
and 1(d). (Note that x (¢) looks like y (¢), resulting in a
high M, ,(0) [=MI,,(0)], as shown in Figs. 2(b) and
2(c).) This means that in Lorenz chaos, the connectivity
of information transference does not have to be bidirec-
tional (even though the variables are mutually coupled).
That is why, for example, x can “remember” more about
the initial conditions of y, but at the same time y loses
more memory about the initial conditions of x. This
feature is amazing because it implies that terms such as
“selfish” and “nonmutually beneficial” still may be appli-
cable to nonbiological systems. Here “selfish” can have a
solid definition based on the transport character of infor-
mation.

To characterize the evolution process of information
transference in detail, we can label the top and bottom
points of memory flows as the “turning” points. As an
example, we look at the evolution from 7=0 to 7, the
first turning point (indicated by |1). Referring to Fig.
2(b), the memory of every initial condition of any specific
channel can be interpreted as follows.

(i) Since S, decreases, the z channel loses the memory
of its own initial condition. Meanwhile, because M, ,
also decreases, x also loses the memory of the initial con-
dition of z. Nevertheless, M,, increases at the same time.
This suggests that information is transferred from z to y.

(ii) Because S, decreases, channel y loses its own
memory. But M, increases coincidently (as does M, ).
This means that information is transferred from channel
y to channels x and z.

(iii) Again, the x channel loses its own memory due to
the decrease of S,. In addition, y also loses its memory of
the initial conditions of x. However, M,, increases. This
indicates that information has been transferred from x to
z.

By this method, one can numerically determine the
whole evolution process of information transference. To
study the transition in memory flows, a fast Fourier
transform spectrum analysis has been taken. We have
found that there are obvious differences in different evo-
lution stages. For comparison, we also have calculated
the total information of the whole system and some
different characteristics are found in the memory flows of
the whole system.
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IV. CONCLUSIONS

In summary, a Lorenz chaos has been considered as a
prototypical model to investigate the information
transference between different channels of a coupled
three-element model. The above states that there is a
unidirectional information transference which cannot be
read from the coupling configuration and time series. It
is worthwhile to emphasize that the unidirectional con-
nectivity is a nonmutually beneficial relation. It has the
sense of “‘selfishness.”

Let us summarize the general feature of this coupled
three-element model in comparison with those of a cou-
pled two-element model. It is true that information
transference and memory flow are information dissipative
in nature due to chaos. The direction of information
transference does not have to be bidirectional. Unidirec-
tional transference actually occurs more often, as ob-
served in the Lorenz model. In regard to the out-of-
phase feature presented in the memory flows of one chan-
nel in the coupled two-element models, we should notice
that the out-of-phase feature has been replaced by an al-
most antiphase relationship characteristic of Lorenz
chaos. This suggests that information must be circulated
among all coupled elements in a fundamental period of
time.

Our results on the direction of information transfer-
ence may provide an interesting issue which is worthy of
further study, particularly for the biological systems. It
is certainly true that our present study is still strongly
model dependent. A question arises as to what is the in-
terplay between the memory flows for other models. Par-
ticularly, is it possible to have some universal and quanti-
tative features for the memory flow structure in coupled
element models, such as neural networks or brain mod-
els? We leave these interesting issues to future works.
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